Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Genet ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662189

RESUMO

Chromosomal rearrangements are often associated with playing a role in the speciation process. However, the underlying mechanism that favors the genetic isolation associated with chromosomal changes remains elusive. In this sense, the genus Mazama is recognized by its high level of karyotype diversity among species with similar morphology. A cryptic species complex has been identified within the genus, with the red brocket deer (Mazama americana and Mazama rufa) being the most impressive example. The chromosome variation was clustered in cytotypes with diploid numbers ranging from 42 to 53 and was correlated with geographical location. We conducted an analysis of chromosome evolution of the red brocket deer complex using comparative chromosome painting and Bacterial Artificial Chromosome (BAC) clones among different cytotypes. The aim was to deepen our understanding of the karyotypic relationships within the red brocket, thereby elucidating the significant chromosome variation among closely related species. This underscores the significance of chromosome changes as a key evolutionary process shaping their genomes. The results revealed the presence of three distinct cytogenetic lineages characterized by significant karyotypic divergence, suggesting the existence of efficient post-zygotic barriers. Tandem fusions constitute the main mechanism driving karyotype evolution, following a few centric fusions, inversion X-autosomal fusions. The BAC mapping has improved our comprehension of the karyotypic relationships within the red brocket deer complex, prompting questions regarding the role of these changes in the speciation process. We propose the red brocket as a model group to investigate how chromosomal changes contribute to isolation and explore the implications of these changes in taxonomy and conservation.

2.
Genes (Basel) ; 15(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397149

RESUMO

Repetitive sequences form a substantial and still enigmatic part of the mammalian genome. We isolated repetitive DNA blocks of the X chromosomes of three species of the family Bovidae: Kobus defassa (KDEXr sequence), Bos taurus (BTAXr sequence) and Antilope cervicapra (ACEXr sequence). The copy numbers of the isolated sequences were assessed using qPCR, and their chromosomal localisations were analysed using FISH in ten bovid tribes and in outgroup species. Besides their localisation on the X chromosome, their presence was also revealed on the Y chromosome and autosomes in several species. The KDEXr sequence abundant in most Bovidae species also occurs in distant taxa (Perissodactyla and Carnivora) and seems to be evolutionarily older than BTAXr and ACEXr. The ACEXr sequence, visible only in several Antilopini species using FISH, is probably the youngest, and arised in an ancestor common to Bovidae and Cervidae. All three repetitive sequences analysed in this study are interspersed among gene-rich regions on the X chromosomes, apparently preventing the crossing-over in their close vicinity. This study demonstrates that repetitive sequences on the X chromosomes have undergone a fast evolution, and their variation among related species can be beneficial for evolutionary studies.


Assuntos
Antílopes , Cervos , Bovinos/genética , Animais , Humanos , Sequências Repetitivas de Ácido Nucleico/genética , Cervos/genética , Cromossomo Y/genética , DNA , Antílopes/genética , Cromossomos Humanos X
3.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340334

RESUMO

Fishes of the genus Carassius are useful experimental vertebrate models for the study of evolutionary biology and cytogenetics. Carassius demonstrates diverse biological characteristics, such as variation in ploidy levels and chromosome numbers, and presence of microchromosomes. Those Carassius polyploids with ≥150 chromosomes have microchromosomes, but the origin of microchromosomes, especially in European populations, is unknown. We used cytogenetics to study evolution of tandem repeats (U1 and U2 small nuclear DNAs and H3 histone) and microchromosomes in Carassius from the Czech Republic. We tested the hypotheses whether the number of tandem repeats was affected by polyploidization or divergence between species and what mechanism drives evolution of microchromosomes. Tandem repeats were found in tetraploid and hexaploid Carassius gibelio, and tetraploid Carassius auratus and Carassius carassius in conserved numbers, with the exception of U1 small nuclear DNA in C. auratus. This conservation indicates reduction and/or loss in the number of copies per locus in hexaploids and may have occurred by divergence rather than polyploidization. To study the evolution of microchromosomes, we used the whole microchromosome painting probe from hexaploid C. gibelio and hybridized it to tetraploid and hexaploid C. gibelio, and tetraploid C. auratus and C. carassius. Our results revealed variation in the number of microchromosomes in hexaploids and indicated that the evolution of the Carassius karyotype is governed by macrochromosome fissions followed by segmental duplication in pericentromeric areas. These are potential mechanisms responsible for the presence of microchromosomes in Carassius hexaploids. Differential efficacy of one or both of these mechanisms in different tetraploids could ensure variability in chromosome number in polyploids in general.


Assuntos
Cyprinidae , Duplicações Segmentares Genômicas , Animais , Tetraploidia , Análise Citogenética , Sequências de Repetição em Tandem , Poliploidia
4.
Zool Stud ; 62: e30, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671175

RESUMO

Mazama simplicicornis argentina is the name that was given to describe a gray brocket collected by Lönberg in 1919 in the central Chaco region of Argentina. Subsequent authors, based on morphological similarities, considered this name to be a synonym for the species Subulo gouazoubira Fischer, 1814 from Paraguay. In the absence of genetic analyses to compare the Argentinian and Paraguayan gray brockets, we aimed to clarify the taxonomy of M. simplicicornis argentina through an integrative assessment using morphological, cytogenetical, and molecular data from its holotype and a current topotype. Qualitative skull features and cranio-morphometric results of M. simplicicornis argentina showed a great similarity with the S. gouazoubira neotype characters. The diploid chromosome number of M. simplicicornis argentina topotype corresponded with the karyotypical pattern of S. gouazoubira with 2n = 70 and FN = 70, showing a great similarity in all classic and molecular cytogenetic results and revealing the homologies between karyotypes. The phylogenetic analysis of mitochondrial genes used in this study (concatenated partial ND5 and Cytb gene) allocated the M. simplicicornis argentina specimens in the monophyletic clade of S. gouazoubira with a branch value of 100%. These results show that there is no discontinuity between the Argentinian and Paraguayan gray brockets. Therefore, the individuals originally described as M. simplicicornis argentina should be recognized as S. gouazoubira.

5.
Eur J Wildl Res ; 69(4): 81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483536

RESUMO

Repetitive elements have been identified in several amphibian genomes using whole genome sequencing, but few studies have used cytogenetic mapping to visualize these elements in this vertebrate group. Here, we used fluorescence in situ hybridization and genomic data to map the U1 and U2 small nuclear RNAs and histone H3 in six species of African clawed frog (genus Xenopus), including, from subgenus Silurana, the diploid Xenopus tropicalis and its close allotetraploid relative X. calcaratus and, from subgenus Xenopus, the allotetraploid species X. pygmaeus, X. allofraseri, X. laevis, and X. muelleri. Results allowed us to qualitatively evaluate the relative roles of polyploidization and divergence in the evolution of repetitive elements because our focal species include allotetraploid species derived from two independent polyploidization events - one that is relatively young that gave rise to X. calcaratus and another that is older that gave rise to the other (older) allotetraploids. Our results demonstrated conserved loci number and position of signals in the species from subgenus Silurana; allotetraploid X. calcaratus has twice as many signals as diploid X. tropicalis. However, the content of repeats varied among the other allotetraploid species. We detected almost same number of signals in X. muelleri as in X. calcaratus and same number of signals in X. pygmaeus, X. allofraseri, X. laevis as in the diploid X. tropicalis. Overall, these results are consistent with the proposal that allopolyploidization duplicated these tandem repeats and that variation in their copy number was accumulated over time through reduction and expansion in a subset of the older allopolyploids.

6.
Environ Mol Mutagen ; 64(6): 326-334, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37421236

RESUMO

Air pollution is an important environmental factor influencing human health. In this study, we compared chromosome damage in city policemen from three cities in the Czech Republic: industrial Ostrava characterized by high levels of benzo[a]pyrene, Prague with heavy traffic emitting nitrogen oxides, and relatively clean Ceske Budejovice located in an area with predominantly agricultural activity. Chromosomal aberrations in lymphocytes were evaluated by fluorescence in situ hybridization with painting probes for chromosomes 1, 2, 3, and 4 in spring and autumn. An increase in the frequency of unstable chromosome aberrations, that is, dicentric chromosomes and acentric fragments, was observed in spring samples from Ostrava (p = .014 and p = .044, respectively) and Prague (p = .002 and p = .006, respectively) in comparison with Ceske Budejovice. The difference was significant only for samples taken after the winter period, when the concentration of pollutants in the air increases due to poor dispersion conditions. An increased frequency of dicentric chromosomes was observed in spring compared to autumn in both Ostrava and Prague (p = .017 and p = .023, respectively), but not in Ceske Budejovice. More breakpoints were observed on chromosome 1 than on the other chromosomes examined (p < .001). The number of breakpoints in the heterochromatin region 1p11-q12 was lower than in other parts of chromosome 1 (p < .001), suggesting a protective function of heterochromatin against damage. Our study showed, that air pollution increased the frequency of unstable chromosome aberrations, especially dicentric chromosomes. However, we did not show an effect on stable chromosome rearrangements.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/toxicidade , Hibridização in Situ Fluorescente , Heterocromatina , Poluição do Ar/efeitos adversos , Aberrações Cromossômicas/induzido quimicamente
7.
Animals (Basel) ; 13(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830488

RESUMO

We identified a small, supernumerary marker chromosome (sSMC) in two phenotypically normal Asian elephants (Elephas maximus): a female (2n = 57,XX,+mar) and her male offspring (2n = 57,XY,+mar). sSMCs are defined as structurally abnormal chromosomes that cannot be identified by conventional banding analysis since they are usually small and often lack distinct banding patterns. Although current molecular techniques can reveal their origin, the mechanism of their formation is not yet fully understood. We determined the origin of the marker using a suite of conventional and molecular cytogenetic approaches that included (a) G- and C-banding, (b) AgNOR staining, (c) preparation of a DNA clone using laser microdissection of the marker chromosome, (d) FISH with commercially available human painting and telomeric probes, and (e) FISH with centromeric DNA derived from the centromeric regions of a marker-free Asian elephant. Moreover, we present new information on the location and number of NORs in Asian and savanna elephants. We show that the metacentric marker was composed of heterochromatin with NORs at the terminal ends, originating most likely from the heterochromatic region of chromosome 27. In this context, we discuss the possible mechanism of marker formation. We also discuss the similarities between sSMCs and B chromosomes and whether the marker chromosome presented here could evolve into a B chromosome in the future.

8.
Gene ; 851: 146974, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309242

RESUMO

Allopolyploid genomes are divided into compartments called subgenomes that are derived from lower ploidy ancestors. In African clawed frogs of the subgenus Xenopus (genus Xenopus), allotetraploid species have two subgenomes (L and S) with morphologically distinct homoeologous chromosomes. In allotetraploid species of the sister subgenus Silurana, independently evolved subgenomes also exist, but their cytogenetics has not been investigated in detail. We used a diverse suite of cytogenetic and molecular FISH techniques on an allotetraploid species in Silurana-Xenopus calcaratus-to explore evolutionary dynamics of chromosome morphology and rearrangements. We find that the subgenomes of X. calcaratus have distinctive characteristics, with a more conserved a-subgenome resembling the closely related genome of the diploid species X. tropicalis, and a more rapidly evolving b-subgenome having more pronounced changes in chromosome structure, including diverged heterochromatic blocks, repetitive sequences, and deletion of a nucleolar secondary constriction. Based on these cytogenetic differences, we propose a chromosome nomenclature for X. calcaratus that may apply to other allotetraploids in subgenus Silurana, depending on as yet unresolved details of their evolutionary origins. These findings highlight the potential for large-scale asymmetry in subgenome evolution following allopolyploidization.


Assuntos
Cromossomos , Diploide , Animais , Xenopus laevis , Xenopus/genética , Cromossomos/genética , Genoma/genética , Evolução Molecular , Genoma de Planta
9.
Cytogenet Genome Res ; 162(3): 140-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35981520

RESUMO

Cervids are characterized by their greatest karyotypic diversity among mammals. A great diversity of chromosome numbers in notably similar morphological groups leads to the existence of several complexes of cryptic species and taxonomic uncertainties. Some deer lineages, such as those of Neotropical deer, stand out for a rapid chromosomal reorganization and intraspecific chromosome polymorphisms, which have not been properly explored yet. For that reason, we contribute to the study of deer karyotype diversity and taxonomy by producing and characterizing new molecular cytogenetic markers for the gray brocket deer (Subulo gouazoubira), a deer species that retained the hypothetical ancestral karyotype of Cervidae. We used bacterial artificial chromosome (BAC) clones derived from the cattle genome (Bos taurus) as markers, which were hybridized on S. gouazoubira metaphase chromosomes. In total, we mapped 108 markers, encompassing all gray brocket deer chromosomes, except the Y chromosome. The detailed analysis of fluorescent in situ hybridization results showed 6 fissions and 1 fusion as interchromosomal rearrangements that have separated cattle and gray brocket deer karyotypes. Each group of BAC probes derived from bovine chromosome pairs 1, 2, 5, 6, 8, and 9 showed hybridization signals on 2 different chromosomes, while pairs 28 and 26 are fused in tandem in a single acrocentric chromosome in S. gouazoubira. Furthermore, the BAC markers detected the occurrence of intrachromosomal rearrangements in the S. gouazoubira chromosomes homologous to pair 1 and the X chromosome of cattle. We present a karyotypic map of the 108 new markers, which will be of great importance for future karyotypic evolution studies in cervids and, consequently, help in their conservation and taxonomy resolution.


Assuntos
Cervos , Animais , Bovinos/genética , Cromossomos Artificiais Bacterianos/genética , Cervos/genética , Hibridização in Situ Fluorescente/métodos , Cariótipo , Cariotipagem , Cromossomo X
10.
Front Genet ; 12: 742870, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970296

RESUMO

The red brocket deer Mazama americana Erxleben, 1777 is considered a polyphyletic complex of cryptic species with wide chromosomal divergence. Evidence indicates that the observed chromosomal divergences result in reproductive isolation. The description of a neotype for M. americana allowed its genetic characterization and represented a comparative basis to resolve the taxonomic uncertainties of the group. Thus, we designated a neotype for the synonym Mazama rufa Illiger, 1815 and tested its recognition as a distinct species from the M. americana complex with the analysis of morphological, cytogenetic and molecular data. We also evaluated its distribution by sampling fecal DNA in the wild. Morphological data from craniometry and body biometry indicated an overlap of quantitative measurements between M. rufa and the entire M. americana complex. The phylogenetic hypothesis obtained through mtDNA confirmed the reciprocal monophyly relationship between M. americana and M. rufa, and both were identified as distinct molecular operational taxonomic units by the General Mixed Yule Coalescent species delimitation analysis. Finally, classic cytogenetic data and fluorescence in situ hybridization with whole chromosome painting probes showed M. rufa with a karyotype of 2n = 52, FN = 56. Comparative analysis indicate that at least fifteen rearrangements separate M. rufa and M. americana (sensu stricto) karyotypes, which confirmed their substantial chromosomal divergence. This divergence should represent an important reproductive barrier and allow its characterization as a distinct and valid species. Genetic analysis of fecal samples demonstrated a wide distribution of M. rufa in the South American continent through the Atlantic Forest, Cerrado and south region of Amazon. Thus, we conclude for the revalidation of M. rufa as a distinct species under the concept of biological isolation, with its karyotype as the main diagnostic character. The present work serves as a basis for the taxonomic review of the M. americana complex, which should be mainly based on cytogenetic characterization and directed towards a better sampling of the Amazon region, the evaluation of available names in the species synonymy and a multi-locus phylogenetic analysis.

11.
Animals (Basel) ; 11(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34573579

RESUMO

The family Cervidae groups a range of species with an increasing economic significance. Their karyotypes share 35 evolutionary conserved chromosomal segments with cattle (Bos taurus). Recent publication of the annotated red deer (Cervus elaphus) whole genome assembly (CerEla1.0) has provided a basis for advanced genetic studies. In this study, we compared the red deer CerEla1.0 and bovine ARS-UCD1.2 genome assembly and used fluorescence in situ hybridization with bovine BAC probes to verify the homology between bovine and deer chromosomes, determined the centromere-telomere orientation of the CerEla1.0 C-scaffolds and specified positions of the cervid evolutionary chromosome breakpoints. In addition, we revealed several incongruences between the current deer and bovine genome assemblies that were shown to be caused by errors in the CerEla1.0 assembly. Finally, we verified the centromere-to-centromere orientation of evolutionarily fused chromosomes in seven additional deer species, giving a support to previous studies on their chromosome evolution.

12.
Animals (Basel) ; 11(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34359234

RESUMO

Fluorescence in situ hybridization is a molecular cytogenetics technique that enables the visualization of chromosomes in cells via fluorescently labeled molecular probes specific to selected chromosomes. Despite difficulties in carrying out the FISH technique on sperm, related to the need for proper nuclear chromatin decondensation, this technique has already been used to visualize chromosomes in human, mouse, cattle, swine, horse, and dog spermatozoa. Until now, FISH has not been performed on domestic cat sperm; therefore, the aim of this study was to visualize sex chromosomes in domestic cat sperm. The results showed the presence of X and Y chromosomes in feline spermatozoa. The procedure used for sperm decondensation and fluorescence in situ hybridization was adequate to visualize chromosomes in domestic cat spermatozoa and, in the future, it may be used to determine the degree of chromosomal abnormalities in these gametes.

13.
J Appl Genet ; 62(2): 319-321, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33594629

RESUMO

Chacoan peccary (Catagonus wagneri, 2n=20) is the most endangered of three extant species of Tayassuidae. Its karyotype has been studied only by differential chromosome staining methods so far. To establish a comparative cytogenetic map of the peccary, we used cross-species hybridization with porcine (Sus scrofa, 2n=38) painting probes. Painting revealed 30 evolutionary conserved autosomal segments between pig and peccary. The q-arm of the submetacentric chromosome X is homologous to the porcine X chromosome, while the p-arm is composed of heterochromatin. Nucleolar organizer regions were detected on chromosomes 8 and 9 which are homologous to pig chromosomes 8 and 4/18, respectively. Fusions of chromosomes homologous to pig chromosomes 4/7 and 4/18 and fission of chromosome 7 are synapomorphic characters shared by Catagonus wagneri and Tayassu pecari but not by Pecari tajacu. Our results confirmed a high rate of karyotype evolution in Tayassuidae and a closer relationship of Catagonus wagneri with Tayassu pecari than with Pecari tajacu.


Assuntos
Artiodáctilos , Coloração Cromossômica , Cariotipagem , Animais , Artiodáctilos/genética , Suínos/genética , Cromossomo X/genética
14.
Genes (Basel) ; 12(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530376

RESUMO

Chromosomal polymorphism plays a major role in speciation processes in mammals with high rates of karyotypic evolution, as observed in the family Cervidae. One remarkable example is the genus Mazama that comprises wide inter- and intra-specific chromosomal variability. To evaluate the impact of chromosomal polymorphisms as reproductive barriers within the genus Mazama, inter-specific hybrids between Mazama gouazoubira and Mazama nemorivaga (MGO × MNE) and intra-specific hybrids between cytotypes of Mazama americana (MAM) differing by a tandem (TF) or centric fusion (Robertsonian translocations-RT) were evaluated. MGO × MNE hybrid fertility was evaluated by the seminal quality and testicular histology. MAM hybrids estimation of the meiotic segregation products was performed by sperm-FISH analysis. MGO × MNE hybrids analyses showed different degrees of fertility reduction, from severe subfertility to complete sterility. Regarding MAM, RT, and TF carriers showed a mean value for alternate segregation rate of 97.74%, and 67.23%, and adjacent segregation rate of 1.80%, and 29.07%, respectively. Our results suggested an efficient post-zygotic barrier represented by severe fertility reduction for MGO × MNE and MAM with heterozygous TF. Nevertheless, RT did not show a severe effect on the reproductive fitness in MAM. Our data support the validity of MGO and MNE as different species and reveals cryptic species within MAM.


Assuntos
Cromossomos , Polimorfismo Genético , Ruminantes/genética , Animais , Cruzamento , Coloração Cromossômica , Feminino , Hibridização Genética , Hibridização in Situ Fluorescente , Masculino
15.
Sci Rep ; 11(1): 3152, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542477

RESUMO

Chromosome structural change has long been considered important in the evolution of post-zygotic reproductive isolation. The premise that karyotypic variation can serve as a possible barrier to gene flow is founded on the expectation that heterozygotes for structurally distinct chromosomal forms would be partially sterile (negatively heterotic) or show reduced recombination. We report the outcome of a detailed comparative molecular cytogenetic study of three antelope species, genus Raphicerus, that have undergone a rapid radiation. The species are largely conserved with respect to their euchromatic regions but the X chromosomes, in marked contrast, show distinct patterns of heterochromatic amplification and localization of repeats that have occurred independently in each lineage. We argue a novel hypothesis that postulates that the expansion of heterochromatic blocks in the homogametic sex can, with certain conditions, contribute to post-zygotic isolation. i.e., female hybrid incompatibility, the converse of Haldane's rule. This is based on the expectation that hybrids incur a selective disadvantage due to impaired meiosis resulting from the meiotic checkpoint network's surveillance of the asymmetric expansions of heterochromatic blocks in the homogametic sex. Asynapsis of these heterochromatic regions would result in meiotic silencing of unsynapsed chromatin and, if this persists, germline apoptosis and female infertility.


Assuntos
Antílopes/genética , Especiação Genética , Cariótipo , Modelos Genéticos , Isolamento Reprodutivo , Cromossomo X/ultraestrutura , África , Animais , Antílopes/classificação , Feminino , Fluxo Gênico , Heterozigoto , Hibridização Genética , Hibridização in Situ Fluorescente , Infertilidade Feminina/genética , Masculino , Meiose , Recombinação Genética , Fatores Sexuais
16.
Genes (Basel) ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478071

RESUMO

The taxonomy and phylogenetics of Neotropical deer have been mostly based on morphological criteria and needs a critical revision on the basis of new molecular and cytogenetic markers. In this study, we used the variation in the sequence, copy number, and chromosome localization of satellite I-IV DNA to evaluate evolutionary relationships among eight Neotropical deer species. Using FISH with satI-IV probes derived from Mazama gouazoubira, we proved the presence of satellite DNA blocks in peri/centromeric regions of all analyzed deer. Satellite DNA was also detected in the interstitial chromosome regions of species of the genus Mazama with highly reduced chromosome numbers. In contrast to Blastocerus dichotomus, Ozotoceros bezoarticus, and Odocoileus virginianus, Mazama species showed high abundance of satIV DNA by FISH. The phylogenetic analysis of the satellite DNA showed close relationships between O. bezoarticus and B. dichotomus. Furthermore, the Neotropical and Nearctic populations of O. virginianus formed a single clade. However, the satellite DNA phylogeny did not allow resolving the relationships within the genus Mazama. The high abundance of the satellite DNA in centromeres probably contributes to the formation of chromosomal rearrangements, thus leading to a fast and ongoing speciation in this genus, which has not yet been reflected in the satellite DNA sequence diversification.


Assuntos
DNA Satélite/genética , Cervos/genética , Filogenia , Animais , Células Cultivadas , Cervos/classificação , Fibroblastos , Marcadores Genéticos , Especiação Genética , Hibridização in Situ Fluorescente , Cultura Primária de Células , Pele/citologia
17.
Genes (Basel) ; 11(5)2020 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456268

RESUMO

Centromeric and pericentromeric chromosome regions are occupied by satellite DNA. Satellite DNAs play essential roles in chromosome segregation, and, thanks to their extensive sequence variability, to some extent, they can also be used as phylogenetic markers. In this paper, we isolated and sequenced satellite DNA I-IV in 11 species of Cervidae. The obtained satellite DNA sequences and their chromosomal distribution were compared among the analysed representatives of cervid subfamilies Cervinae and Capreolinae. Only satI and satII sequences are probably present in all analysed species with high abundance. On the other hand, fluorescence in situ hybridisation (FISH) with satIII and satIV probes showed signals only in a part of the analysed species, indicating interspecies copy number variations. Several indices, including FISH patterns, the high guanine and cytosine (GC) content, and the presence of centromere protein B (CENP-B) binding motif, suggest that the satII DNA may represent the most important satellite DNA family that might be involved in the centromeric function in Cervidae. The absence or low intensity of satellite DNA FISH signals on biarmed chromosomes probably reflects the evolutionary reduction of heterochromatin following the formation of chromosome fusions. The phylogenetic trees constructed on the basis of the satellite I-IV DNA relationships generally support the present cervid taxonomy.


Assuntos
Variações do Número de Cópias de DNA/genética , DNA Satélite/genética , Sequências Repetitivas de Ácido Nucleico/genética , Ruminantes/genética , Animais , Centrômero/genética , Heterocromatina/genética , Humanos , Hibridização in Situ Fluorescente/métodos
18.
Vet Comp Oncol ; 18(3): 438-444, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31574575

RESUMO

Cutaneous and subcutaneous mast cell tumours (MCTs) are counted among the most frequent cancers in dogs. However, the genetic aetiology of their development is still mostly unknown, with the exception of KIT and tumor protein p53 (TP53 ) mutations reported in less than a half of cutaneous MCTs. In subcutaneous MCTs, no gene alterations were previously detected. We analysed KIT and TP53 mutations in cutaneous and subcutaneous MCTs, and identified methylated CpG sites in KIT and TP53 promoters and adjacent exon 1 regions. The mutation analysis focused on KIT exons 8, 9 and 11, and TP53 exons 5-8, and revealed mutations in 26% and 7% cutaneous MCT cases, respectively. Moreover, we report a first case of KIT mutation ever detected in subcutaneous MCTs. KIT exon 11 mutations and high Kiupel and Patnaik grades were associated with reduced survival in this study. Both KIT and TP53 gene were generally unmethylated in canine cutaneous MCTs. A sporadic methylation of the CpG positions in KIT promoter and adjacent exon 1 was detected in 70.4% of cutaneous and 82% of subcutaneous MCTs. A sporadic methylation of the CpG positions in the TP53 promoter and exon 1 was observed in 36.8% of the analysed cutaneous MCT samples. Only in two subcutaneous MCTs, we observed more than 30% of clones showing KIT methylation at the CpG positions 13 or 14. The CpG position 14 is involved in a predicted binding site for Sp1 transcription factor. However, the significance of KIT promoter methylation at this specific position needs further evaluation.


Assuntos
Doenças do Cão/genética , Mastocitose Cutânea/veterinária , Proteínas Proto-Oncogênicas c-kit/genética , Neoplasias Cutâneas/veterinária , Proteína Supressora de Tumor p53/genética , Animais , Doenças do Cão/cirurgia , Cães , Mastocitose Cutânea/genética , Mastocitose Cutânea/cirurgia , Mutação , Projetos Piloto , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/cirurgia , Tela Subcutânea , Sobrevida
19.
Cytogenet Genome Res ; 159(2): 88-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31593945

RESUMO

The bush dog (Speothos venaticus, 2n = 74) is a near threatened species taxonomically classified among South American canids. We revised the bush dog karyotype and performed a comparative sequence analysis of satellite and satellite-like DNAs in 6 canids: the bush dog, domestic dog (Canis familiaris, 2n = 78), grey wolf (C. lupus, 2n = 78), Chinese raccoon dog (Nyctereutes procyonoides procyonoides, 2n = 54+B), red fox (Vulpes vulpes, 2n = 34+B), and arctic fox (V. lagopus, 2n = 48-50) to specify the species position among Canidae. Using FISH with painting and BAC probes, we found that the distribution of canid evolutionarily conserved chromosome segments in the bush dog karyotype is similar to that of the domestic dog and grey wolf. The bush dog karyotype differs by 2 acrocentric chromosome pairs formed by tandem fusions of the canine (29;34) and (26;35) orthologues. An interstitial signal of the telomeric probe was observed in the (26;35) fusion site in the bush dog indicating a recent evolutionary origin of this rearrangement. Sequences and hybridisation patterns of satellite DNAs were compared, and a phylogenetic tree of the 6 canid species was constructed which confirmed the bush dog position close to the wolf-like canids, and apart from the raccoon dog and foxes.


Assuntos
Cromossomos/genética , DNA Satélite/genética , Animais , Bandeamento Cromossômico/métodos , Cães , Evolução Molecular , Raposas/genética , Cariótipo , Cariotipagem/métodos , Filogenia , Lobos/genética
20.
J Appl Genet ; 60(1): 63-70, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30284681

RESUMO

Mast cell tumours (MCTs) are the most common skin tumours in dogs. Their clinical behaviour is variable and their aetiology remains largely unknown. We performed a metaphase fluorescence in situ hybridisation (FISH) with whole chromosome painting probes, and interphase FISH with BAC probes for 14 cancer-related genes to reveal clonal structural chromosome rearrangements and copy number variants (CNVs) in canine cutaneous MCTs. The metaphase FISH performed in three MCTs revealed several clonal monosomies and trisomies and two different chromosome rearrangements. No centric fusions were detected. The interphase FISH showed a variety of low frequency CNVs for the individual cancer-related genes. The heterogeneous character of the detected abnormalities indicates increased chromosome instability in canine MCTs. The clonal gain of chromosome 11 was detected in 81% (13/16) of the MCTs. Further research is needed to evaluate the significance of this abnormality as prognostic factor for the survival time or recurrence risk assessments in canine cutaneous MCTs.


Assuntos
Aberrações Cromossômicas , Doenças do Cão/genética , Mastócitos/patologia , Neoplasias Cutâneas/veterinária , Animais , Coloração Cromossômica , Cães , Feminino , Hibridização in Situ Fluorescente , Masculino , Neoplasias Cutâneas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...